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ABSTRACT

One problem in computing cloud microphysical processes in coarse-resolution numerical models is that
many microphysical processes are nonlinear and small in scale. Consequently, there are inaccuracies if
microphysics parameterizations are forced with grid box averages of model fields, such as liquid water
content. Rather, the model needs to determine information about subgrid variability and input it into the
microphysics parameterization.

One possible solution is to assume the shape of the family of probability density functions (PDFs)
associated with a grid box and sample it using the Monte Carlo method. In this method, the microphysics
subroutine is called repeatedly, once with each sample point. In this way, the Monte Carlo method acts as
an interface between the host model’s dynamics and the microphysical parameterization. This avoids the
need to rewrite the microphysics subroutines.

A difficulty with the Monte Carlo method is that it introduces into the simulation statistical noise or
variance, associated with the finite sample size. If the family of PDFs is tractable, one can sample solely from
cloud, thereby improving estimates of in-cloud processes. If one wishes to mitigate the noise further, one
needs a method for reduction of variance. One such method is Latin hypercube sampling, which reduces
noise by spreading out the sample points in a quasi-random fashion.

This paper formulates a sampling interface based on the Latin hypercube method. The associated family
of PDFs is assumed to be a joint normal/lognormal (i.e., Gaussian/lognormal) mixture. This method of
variance reduction has a couple of advantages. First, the method is general: the same interface can be used
with a wide variety of microphysical parameterizations for various processes. Second, the method is flexible:
one can arbitrarily specify the number of hydrometeor categories and the number of calls to the micro-
physics parameterization per grid box per time step.

This paper performs a preliminary test of Latin hypercube sampling. As a prototypical microphysical
formula, this paper uses the Kessler autoconversion formula. The PDFs that are sampled are extracted
diagnostically from large-eddy simulations (LES). Both stratocumulus and cumulus boundary layer cases
are tested. In this diagnostic test, the Latin hypercube can produce somewhat less noisy time-averaged
estimates of Kessler autoconversion than a traditional Monte Carlo estimate, with no additional calls to the
microphysics parameterization. However, the instantaneous estimates are no less noisy. This paper leaves
unanswered the question of whether the Latin hypercube method will work well in a prognostic, interactive
cloud model, but this question will be addressed in a future manuscript.
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1. Introduction: Microphysical parameterization in
the presence of small-scale variability

Numerical models of the atmosphere have difficulty
representing small-scale cloud microphysical processes,
such as drizzle formation. This would be difficult even
if microphysical formulas were known with perfect ac-
curacy. This is because it is also difficult for a host
model to provide accurate fields with which to drive the
microphysics. Often a model cannot achieve good re-
sults simply by inputting the grid box averages into a
microphysical parameterization (Sommeria and Dear-
dorff 1977; Rotstayn 2000; Pincus and Klein 2000; Lar-
son et al. 2001). This is because of two reasons: first,
computational constraints preclude the use of grid
boxes that are small enough to fully resolve cloud mi-
crophysical processes; and second, microphysical for-
mulas are often nonlinear. The coarse resolution means
that grid-box-sized volumes contain significant subgrid
variability. The nonlinearity means that, in order to
compute the microphysics accurately, the subgrid vari-
ability about the average must be taken into account.
For example, a microphysics parameterization may
need to be informed that a grid-box-sized region is
filled partially with clouds, or entirely with uniform
clouds, or entirely with clouds of variable liquid water,
etc.

When we account for subgrid variability, we desire a
methodology that is compatible with many types of pa-
rameterizations. These parameterizations may range
from simplified analytic formulas to complex numerical
subroutines. They may represent processes such as au-
toconversion of cloud droplets to drizzle drops, activa-
tion of cloud condensation nuclei, or even atmospheric
chemistry. Also, a researcher may wish to compare
simulations that use the same host model but two dif-
ferent parameterizations. In all these cases, it is more
convenient to account for subgrid variability once for
all parameterizations, rather than using separate meth-
ods for each parameterization.

One general method of accounting for subgrid vari-
ability is the Monte Carlo method (Johnson 1987;
Gentle 2003; Pincus et al. 2003; Räisänen et al. 2004;
Räisänen and Barker 2004). The idea is to draw a sepa-
rate random sample from each grid box and time step.
The microphysics parameterization is then called once
per sample point using the values of vertical velocity w,
cloud water mixing ratio rc, droplet number mixing ra-
tio Nc, and so forth associated with each sample point.
Finally, the microphysical calculations based on each
sample point are suitably averaged. In this way, a
Monte Carlo scheme acts as a general interface be-

tween the model dynamics and the microphysics, that
is, between model-prognosed quantities like rc and the
microphysics parameterization. In principle, this allows
one to insert new microphysics parameterizations in an
almost plug-and-play fashion (Pincus et al. 2003).

A problem is that at each time step, the sampling
introduces statistical noise into the model. The statisti-
cal noise is reduced in a time average by cancellations
between time steps. It is desirable that the noise be
reduced as rapidly as possible, since cloud fields change
over time. This can be accomplished by a so-called
variance reduction method (Räisänen and Barker
2004).

This paper applies to microphysics parameterization
a variance reduction method known as Latin hypercube
sampling (McKay et al. 1979; Owen 2003, hereafter
OW03; Press et al. 1992). The Latin hypercube method
reduces variance by preventing the sample points from
clumping together in sample space, as can happen with
purely random points. The Latin hypercube method
can be used with an arbitrary number of variates (e.g.,
w, rc, Nc, etc.). The Latin hypercube method can use
several sample points per grid box and time step. But
even if only one sample point is used, it can still reduce
the time-averaged noise (but not instantaneous noise)
as compared with traditional Monte Carlo sampling.
We will consider only processes that occur locally
within a single grid box, such as autoconversion, rather
than processes like radiative transfer that depend on
cloud overlap between vertically displaced grid boxes.
The cloud overlap problem has been addressed by
Räisänen et al. (2004) and Räisänen and Barker (2004).
To reduce sampling noise, we will sample only from the
cloudy portion of the grid box, although our algorithm
can be easily modified to handle processes that occur
throughout the entire grid box.

This paper is structured as follows. Section 2 provides
background on methods to account for subgrid variabil-
ity. Section 3 describes the Latin hypercube method
and how to implement it for cloud microphysical prob-
lems. The method requires one to choose a family of
probability density functions. We choose a mixture (i.e.,
sum) of two normal/lognormal functions. In section 4,
we present diagnostic tests of statistical errors that arise
from Latin hypercube sampling. As an example of a
microphysical formula, we will discuss the Kessler au-
toconversion formula. Although the Kessler formula
has the defect of neglecting variations in droplet num-
ber mixing ratio (Cotton and Anthes 1989), it is com-
monly used and it permits one to construct analytic
solutions for purposes of comparison. In section 5, we
present a summary and conclusions.
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2. Background: The problem, stated
mathematically

For concreteness, suppose that we want to compute
autoconversion A, averaged over a grid box, in a way
that accounts for subgrid variability. The essential
problem, mathematically expressed, is to compute an
integral,

A�rc� � �
0

�

drcP�rc�A�rc�. �1�

Here () denotes a grid box average, and A(rc) repre-
sents the grid box average of the autoconversion rate,
A. Here A is assumed to be a function of cloud water rc

alone. In simple parameterizations, A is an analytic
function; in more complex parameterizations, A is a
numerical algorithm. Here P(rc) is the probability den-
sity function (PDF) of rc within the grid box. The inte-
gral states that the average autoconversion rate is a
weighted sum of autoconversion rates. That is, to com-
pute the average, we must compute the autoconversion
rate for each value of rc within the grid box, weight by
the probability of occurrence of that value of rc, and
sum all the values.

The fastest and most accurate way to compute A is to
integrate (1) analytically. This is possible only if both P
and A are simple, analytic functions. Furthermore,
when A is a simple function of only one variable, it costs
relatively little to perform straightforward numerical
integration.

The cost escalates if A is a microphysics parameter-
ization that must be computed numerically, and the
parameterization depends on several variables. For in-
stance, suppose A were a function of d variables, and
we wanted to evaluate it using a computational mesh
with b points in each direction in sample space (not
physical space). A straightforward integration would
involve bd evaluations. For example, if A were a general
microphysics package that depended on 5 variables,
and one desired an integration over 4 mesh points per
variable, one would need to evaluate A at 1024 mesh
points!

Calling a microphysics parameterization 1024 times
in each grid box and time step of a simulation is pro-
hibitively expensive. Pincus et al. (2003) addresses this
problem by making clever use of the traditional Monte
Carlo method, that is, drawing sample points randomly
from the PDF, P(rc). A small number of sample points,
say 1, can be chosen per grid box and time step, and
those points are used to evaluate the microphysics. At
the next time step, a new set of sample points is chosen
for the grid box, and the microphysics is reevaluated.
After a period of time, the hope is that a suitably ac-

curate microphysical average will emerge, even though
the microphysics contains statistical noise at each time
step (Pincus et al. 2003; Räisänen et al. 2004; Räisänen
and Barker 2004). A related approach is to use the
aforementioned straightforward integration, evaluate
at 1 of the bd � 1024 mesh points per time step, and
achieve a time-averaged answer after 1024 time steps.
This is a lot of time steps! However, if one insists on
evaluating at all mesh points, one should at least
scramble the order in which the mesh points are evalu-
ated, in order to reduce the number of time steps that
occur before a reasonably unbiased estimate emerges.

Instead, we advocate Latin hypercube sampling,
which combines advantages of straightforward integra-
tion with those of the traditional Monte Carlo method.
Latin hypercube sampling chooses a particular kind of
scrambled-order sample consisting of b points from the
bd mesh points, and perturbs those points by a small
random factor.

3. The Latin hypercube algorithm

This section describes our proposed method of vari-
ance reduction, Latin hypercube sampling. Latin hyper-
cube sampling forms an interface between the dynami-
cal part of the model and a microphysical parameter-
ization. The interface generates a set of input values
that can be fed into the microphysical parameteriza-
tion.

a. Overview of Latin hypercube sampling

For concreteness, our exposition will assume that the
microphysics depends on five variables: total water
mixing ratio (vapor � cloud water) rt, liquid water po-
tential temperature �l, vertical velocity w, cloud droplet
number mixing ratio Nc, and drizzle mixing ratio rr. The
variables Nc and rr are included because they are useful
for characterizing general drizzle processes not dis-
cussed in this paper. Cloud water mixing ratio, rc, is not
included because it can be diagnosed from rt and �l if we
assume that supersaturation leads instantaneously to
condensation. However, the method can be generalized
to any number of variables, that is, predictands.

The Latin hypercube method requires assuming a
functional form for the family of PDFs representing
variability in a grid box. For the part of the PDF family
that represents rt, �l, and w, we have chosen a mixture
of two Gaussians. This permits both positive and nega-
tive skewness. For Nc and rr, we assume a single log-
normal form. Lognormal PDFs have a positive domain
and are always positively skewed, that is, they contain
many small values and few large values. Lognormal
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PDFs have been used by many authors. Their chief
advantage is simplicity. An unlimited number of log-
normally distributed hydrometeor categories may be
added to the PDF without mathematical difficulty.

The inputs to the Latin hypercube interface are sta-
tistical moments of the variables (rt, �l, w, Nc, rr). Spe-
cifically, for the Gaussian-mixture variables (rt, �l, w),
the input is the means and covariance matrix for each
Gaussian, plus the mixture fraction, a, which deter-
mines the relative magnitude of the two Gaussians.
This is a total of 19 independent inputs. For the log-
normal variables (Nc, rr), the input is the grid box
means and covariance matrix. Also needed are covari-
ances between (rt, �l, w) and (Nc, rr). The output of the
Latin hypercube interface is a user-chosen number of
d-dimensional sample points from the distribution.

The goal of Latin hypercube sampling is to spread
out the sample points, so that low and high and mod-
erate values of each variate are all contained in the
sample. To illustrate the method, suppose that we want
to generate a sample of three points from a bivariate
PDF of w and rt. Suppose furthermore that we want to
sample only cloudy points, assumed here to have rt � 10
g kg�1 for simplicity. To use the Latin hypercube
method, we divide the area in w � rt space covered
by the PDF into a checkerboard of nine “squares” or
“hypercubes” (see Fig. 1). Each square encompasses
equal probability, which means that these squares may
be distorted in shape and/or unequal in area. We then
choose a square at random. Within this square, we

choose a point randomly according to the PDF. Then
we strike out the square’s row and column, and from
the remaining rows and columns, choose another
square at random. From within this second square, we
choose a point randomly. Finally, we iterate once more,
thereby selecting the third point (Press et al. 1992, p.
315). In the example in Fig. 1, the three sample points
are chosen from the following squares: point 1 has (w,
rt) ↔ (medium value, low value), point 2 has (w, rt) ↔
(high value, medium value), point 3 has (w, rt) ↔ (low
value, high value).

We see that any three Latin hypercube sample pairs
(w, rt) are guaranteed to contain small, medium, and
large values of both w and rt. This is useful for driving
a microphysics package containing many schemes, each
of which varies primarily with one variable (OW03).
For instance, a cloud droplet activation scheme may
vary strongly with w, whereas an autoconversion
scheme may depend mostly on rt (i.e., rc). If the micro-
physics package is fed a Latin hypercube sample, the
activation scheme will sample a full range of w values,
and the autoconversion scheme will fully sample rt. This
is advantageous. In general, Latin hypercube sampling
performs well whenever the quantity to be averaged is
a sum of univariate functions (OW03).

In contrast, for schemes that depend strongly on the
correlation of two variables, Latin hypercube sampling
has little advantage over traditional Monte Carlo sam-
pling (Press et al. 1992). However, Latin hypercube is
guaranteed not to perform much worse. Specifically,

FIG. 1. A three-point Latin hypercube sample taken from the cloudy portion (rt � 10) of a bivariate (w � rt) single Gaussian PDF.
The PDF has been divided into three “rows” i.e., strips of nearly constant rt, and three “columns,” i.e., strips of roughly constant w. (a)
A “square” is chosen at random (dark shading) and within it is randomly chosen the first sample point (dot). The square’s column and
row (light shading) are excluded when selecting subsequent squares. (b) The second sample point is chosen, and its row and column
are excluded (vertical hatching). (c) The third point is selected randomly from within the only square that remains. All squares are
associated with equal probability (figure not drawn to scale).
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Owen (1997) has proven that the variance of a nt-point
Latin hypercube sample, VLHS, is related to the vari-
ance of a traditional nt-point Monte Carlo sample,
VMC, by

VLHS �
nt

nt � 1
VMC, where nt � 1. �2�

In other words, a Latin hypercube sample with nt � 1
points is never worse, on average, than a Monte Carlo
sample with one fewer point. The proof holds for any
square-integrable (autoconversion) integrand.

b. Generating a uniformly distributed Latin
hypercube sample

Most random number generators generate a series of
numbers between 0 and 1 that are distributed uni-
formly. For this reason, it is simplest to draw the Latin
hypercube sample from a uniform PDF with indepen-
dent variates. Later we transform the sample points to
points from the PDF of interest, in this case a normal/
lognormal mixture. We choose nt Latin hypercube
points from a (d � 1)-variate uniform PDF. The first d
variates represent, in our case, our d � 5 variables (rt,
�l, w, Nc, rr). The (d � 1)th variate, the mixture variate,
is used to select one of the two mixture components or
“plumes” from the binormal/lognormal PDF, as de-
scribed below.

To construct the Latin hypercube sample, we use the
following algorithm (OW03). We first generate (d � 1)
independent columns consisting of random permuta-
tions of the integers [0, . . . , (nt � 1)] (OW03; Devroye
1986). These column vectors form a nt � (d � 1) matrix,
	ij. This matrix is used to select the squares in the
sample space. Next, we choose the location of each
sample point randomly within its square. To do so, we
form a matrix U whose elements are nt � (d � 1) real
numbers drawn independently and randomly from a
uniform distribution varying between (but not includ-
ing) 0 and 1. Our random number generator is that of
Press et al. (1992, 281–282), based on L’Ecuyer (1988).
Finally, the set of nt Latin hypercube samples is given
by the nt � (d � 1) matrix V,

Vij �
1
nt


ij �
1
nt

Uij. �3�

Each row of V is a (d � 1)-variate Latin hypercube
sample, with each column corresponding to a different
variable: rt, �l, w, Nc, rr, or the mixture variate. Now
consider the first column, which corresponds to nt

sample points for rt. Because the first column of 	 (and
all the others) consists of a permutation of 0, 1, . . . , (nt

� 1), the values of the first column of V are spread out

or stratified, with one value between 0 and 1/nt, another
between 1/nt and 2/nt, and so forth. This leads to an
improvement in the estimates of functions of rt, relative
to Monte Carlo sampling without stratification.

We do not need to use all nt sample points for a given
grid box during one time step. Instead, we may save the
values of the nt sample points between time steps, using
without replacement n � nt of the sample points at a
time, so that after nt/n time steps all nt points are used
once (and only once). Then a new batch of nt points
may be generated. Here nt/n must be an integer. Below
we shall focus on Latin hypercube samples with (n � 1,
nt � 12), (n � 2, nt � 12), and (n � 1, nt � 1). The latter
case is simply traditional Monte Carlo sampling. The
computational cost of (n � 1, nt � 12) sampling is no
more than traditional Monte Carlo (n � 1, nt � 1)
except for the small overhead associated with con-
structing the Latin hypercube matrix Vij. The cost of (n
� 2, nt � 12) is double the other two sample types. We
have chosen nt � 12 only because it allows one to
choose n � 3 if one so desires in the future. Other
values of nt give similar results.

c. A change of variables to facilitate sampling of
cloudy points

Now we transform from the model-produced vari-
ables rt and �l to new variables s and t. The purpose is
to allow us to sample solely from the cloudy part of the
grid box. The variable s approximates rc when s � 0.
The variable t is orthogonal to s. When t varies, rc re-
mains unchanged. The variables s and t are approxi-
mated as linear combinations of rt and �l. The transfor-
mation is a translation of the origin of the coordinates
plus rotation and stretching.

Mathematically, the transformation between (rt, �l)
and (s, t) is defined by the following equations. First, we
divide s and t into mean () and perturbation ()� parts

s � s � s�, �4�

t � t � t�. �5�

Consider the translation of the origin of coordinates.
For simplicity, we let

t � 0. �6�

This entails no loss of generality. The location of s is set
by [see Lewellen and Yoh (1993); also Sommeria and
Deardorff (1977); Mellor (1977)]

s 
 rt � rs�Tl, p�
�1 � �1�Tl�rt �

�1 � �1�Tl�rs�Tl, p��
, �7�
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where rt is the total water mixing ratio (vapor plus liq-
uid). We have employed liquid water temperature, de-
fined as (Sommeria and Deardorff 1977)

Tl 
 T �
L

cp
rc � �l� p

p0
�Rd�cp

, �8�

where T is temperature, L is the latent heat of vapor-
ization, Rd is the gas constant for dry air, cp is the spe-
cific heat of dry air at constant pressure, and p0 is a
reference pressure. The variable Tl is approximately
conserved under condensation, but unlike the liquid
water potential temperature, �l, Tl is not conserved un-
der changes in pressure. We have also defined a func-
tion, �1(Tl)

�1 � �1�Tl� �
Rd

R�
� L

RdTl
�� L

cpTl
�, �9�

where R� is the gas constant for water vapor. The func-
tion �1 is dimensionless and ranges from about 150 at
T � 300 K to about 337 at T � 200 K. Also, the satu-
ration mixing ratio evaluated at T � Tl, rs(Tl, p), is
given by

rs�Tl , p� �
Rd

R�

es�Tl�

p � es�Tl�
, �10�

where p is pressure, and es is the saturation vapor pres-
sure over a liquid water surface.

The rotation and stretching of the coordinates is
given by

s� � crt
r�t � c�l

��l, �11�

t� � crt
r�t � c�l

��l, �12�

where we have defined

crt
�

1

1 � ��Tl�rs�Tl, p�

and

c�l
�

1 � ��Tl�rt

�1 � ��Tl�rs�Tl, p��2

cp

L
��Tl�rs�Tl, p�� p

p0
�Rd�cp

.

To construct the PDF below, we need the covariance
matrix of s, t, w, Nc, and rr for each Gaussian compo-
nent. For simplicity, we will write the covariance matrix
for s, t, and w (the extension to the full covariance
matrix, which includes Nc and rr, is straightforward) as
follows:

�
s�

t�

w���s� t� w�� � �
s�2 s�t� w�s�

s�t� t�2 w�t�

w�s� w�t� w�2
� . �13�

To write this in terms of r�t , ��l , and w�, we substitute (11)
and (12) for s� and t�

�
s�

t�

w�
� � �

crt
�c�l

0

crt
c�l

0

0 0 1
��

r�t

��l

w�
� 
 T�

r�t

��l

w�
� . �14�

Substituting (14) into (13), we find

�
s�2 s�t� w�s�

s�t� t�2 w�t�

w�s� w�t� w�2
� � T�

r�t
2 r�t��l w�r�t

r�t��l ��l
2 w���l

w�r�t w���l w�2
�TT.

�15�

Here TT is the transpose of T.

d. Our assumed family of PDFs: A mixture of
normal/lognormals

Before we can transform the uniformly distributed
sample points to the PDF of interest, we must construct
our assumed PDF family, which is a mixture (i.e., sum)
of two multivariate normal components, G1 and G2:

P�s, t, w, Nc0 ln�Nc �Nc0�, rr0 ln�rr �rr0��

� aG1�s, t, w, Nc0 ln�Nc �Nc0�, rr0 ln�rr �rr0��

� �1 � a�G2�s, t, w, Nc0 ln�Nc �Nc0�, rr0 ln�rr �rr0��,

�16�

where 0 � a � 1 is the mixture fraction, that is, the
weight of each Gaussian. Here Nc0 is a constant with a
value equal to unit number mixing ratio in whatever
units are desired, for example, 1 g�1. Similarly, rr0 is the
constant unit drizzle mixing ratio. Because Nc0 ln(Nc/
Nc0) and rr0 ln(rr/rr0) are distributed according to a
Gaussian mixture PDF, Nc and rr are distributed ac-
cording to a double lognormal PDF. For mathematical
simplicity, we will reduce the double lognormal PDFs
to single lognormal PDFs below.

We have chosen this particular PDF family because it
is general enough to represent both cumulus and stra-
tocumulus boundary layers, yet is mathematically trac-
table. Although the mixture fraction, a, is the same for
all variables, skewness can differ for different variables
because the width and means of the individual Gauss-
ians can differ for different variables. All of the PDF’s
defining parameters, such as a, must be provided to the
Latin hypercube sampler by the dynamical model. This
can be done using the parameterization of Larson et al.
(2002) and Golaz et al. (2002). However, one can
choose other PDF families depending on the physical
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system to be modeled and the level of simplicity de-
sired.

To write an explicit form for G1 and G2, we introduce
some notation. Let X be a d-component column vector
representing the different random variables. For our
case, d � 5 and XT � [s, t, w, Nc0 ln(Nc/Nc0), rr0 ln(rr/
rr0)]. Let �1 be a d-component column vector that rep-
resents the means of the d different variables for Gauss-
ian mixture component 1. Likewise, �2 represents the
means of component 2. Next we let �1 be a d � d
covariance matrix for component 1 whose ij element is

�1ij � �Xi � 	 i1��Xj � 	 j1�;

�2 for component 2 is defined analogously.
To obtain a single lognormal in Nc and rr, rather than

a mixture of two lognormals, we set the means and
variances of Nc equal for both mixture components as
follows:

	1�4� � 	2�4� 
 	NcG, �17�

and

�1�4, 4� � �2�4, 4� 
 
NcG
2 , �18�

and similarly for rr.
Here, �NcG is the mean of the Gaussian variable Nc0

ln(Nc /Nc0). It is related to the mean (Nc) and variance
(N�2

c ) of the lognormal variable Nc by Garvey (2000)

	1�4� � 	2�4� 
 	NcG � Nc0 ln�Nc

Nc0
�1 �

N�c
2

Nc
2��1�2�.

�19�

Also, the variance of the Gaussian variable Nc0 ln(Nc /
Nc0) is (Garvey 2000)

�1�4, 4� � �2�4, 4� 
 
NcG
2 � Nc0

2 ln�1 �
N�c

2

Nc
2�. �20�

Finally we may write Gk, where k � 1 or 2, as (Johnson
1987, p. 50)

Gk � �2���d�2 |�k |�1�2 exp��
1
2

�X � 	k�T�k
�1�X � 	k��.

�21�

Equations (16)–(21) are written in abstract notation. To
present the PDF more concretely, we present various
marginal distributions of the full PDF. A marginal dis-
tribution of some variables is obtained by integrating
the PDF over all the other variables. For instance, if we
integrate over Nc and rr, we are left with the marginal
distribution of s, t, and w. In the simplified binormal
PDF that we use (Larson et al. 2002; Golaz et al. 2002),

there is no within-component correlation of w with s or
t. Then we may write for the kth mixture component,

Gk�s�, t�, w�� �
1

�2��3�2
wk
sk
tk�1 � rstk
2 �1�2

� exp��
1
2 �w� � �wk � w�


wk
�2	

� exp��
1

2�1 � rstk
2 �
��s� � �sk � s�


sk
�2

� �t� � �tk � t�


tk
�2

� 2rstk�s� � �sk � s�


sk
�

� �t� � �tk � t�


tk
��	.

Here, wk, sk, and tk are the means of w, s, and t for the
kth mixture component. The quantities w, s, and t are
grid box averages that include contributions from both
mixture components, and w�, s�, and t� are the devia-
tions from the grid box averages. Also, �wk, �sk, and �tk

are the standard deviations of w, s, and t for mixture
component k. Furthermore, �1 � rstk � 1 is the within-
component correlation between s and t.

The marginal distribution of Nc is lognormal

P�Nc� �
1

�2��
NcG �Nc0�Nc

� exp��
1
2 �Nc0 ln�Nc �Nc0� � 	NcG


NcG
�2	.

�22�

The marginal distribution of s and Nc for the kth mix-
ture component is joint normal/lognormal (Garvey
2000)

Pk�s, Nc� �
1

�2��
sk�
NcG �Nc0��1 � rsNc

2 �1�2Nc

� exp��
1

2�1 � rsNc

2 ���s � sk


sk
�2

� �Nc0 ln�Nc �Nc0� � 	NcG


NcG
�2

� 2rsNc�s � sk


sk
�

� �Nc0 ln�Nc�Nc0� � 	NcG


NcG
��	 .
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Here rsNc is the within-component correlation of s and
Nc0 ln(Nc/Nc0), assumed equal for both components.

e. Transforming a uniform distribution to a
binormal/lognormal mixture

Now that we have found an adequate PDF family,
the next step is to transform the Latin hypercube
sample (3) from an independent, uniform distribution
to our correlated, binormal/lognormal distribution. We
want the transformed sample points to be spread out, as
was the original uniform sample. Therefore, we choose
a transformation method that does not scramble or
eliminate any sample points but rather preserves their
relative ordering. Specifically, we choose the so-called
conditional distribution approach. The steps in this ap-
proach are the following (Johnson 1987, p. 43):

1) Find a value of s using the marginal distribution of s.
2) Find a value of t using the conditional distribution of

t given the value of s.
3) Find a value of w using the conditional distribution

of w given the values of s and t.

We iterate for as many variates as needed. This
method reduces the problem of finding a sample from a
multivariate PDF to the problem of finding a series of
sample points from successive univariate PDFs.

To generate a point from a univariate PDF, we use
the inverse cumulative distribution function method
(Johnson 1987, 19–20). The cumulative distribution
function (CDF), denoted F(x), is the probability that a
value of a variable, selected at random from the PDF
P(x), is less than x (Boas 1983, p. 715). The CDF and
PDF are related by

F �x� � �
Lower limit

x

P�x�� dx�. �23�

That is, F(x) is the area under P(x) to the left of x; F(x)
is strictly increasing from 0 to 1 for both binormal and
lognormal PDFs.

To generate a variate with CDF F, we first take a
Latin hypercube sample point V, which is drawn from a
uniform distribution over the range (0, 1). Then we
note that a random variate X from the CDF of interest,
F, is related to V by

F �X� � V. �24�

We invert the function F to solve for what we want, X:

X � F�1�V�. �25�

The transformation is illustrated graphically in Fig. 2.
To generate our binormal/lognormal PDF, we need to
use a numerical algorithm to compute the inverse of a

Gaussian CDF, F�1
G . We use that of Acklam (available

online at http://home.online.no/�pjacklam).
Armed with the conditional distribution approach,

we are prepared to select a value of s from its marginal
distribution, which is a univariate mixture of two
Gaussians in s. First we must choose whether to draw
the sample point from the first or second Gaussian mix-
ture component. To do so, we use the (d � 1)th variate,
denoted MV for mixture variate, from the Latin hyper-
cube sample. Here MV is distributed uniformly on (0,
1). We choose the first mixture component if MV is less
than the probability of finding a point in the first com-
ponent, namely, aC1/C. Otherwise, we choose the sec-
ond mixture component. Here a is the mixture fraction
[see Eq. (16)], C1 is the fraction of component 1 that is
cloudy, C2 is the fraction of component 2 that is cloudy,
and the total cloud fraction from both components is
C � aC1 � (1 � a)C2. We select values from within
cloud because autoconversion and many other micro-
physical processes occur exclusively in cloud. If C � 0,
we do not select a sample point or call the autoconver-
sion scheme for that grid box and time step.

Having chosen the mixture component, we need to
select a point from the cloudy part of the Gaussian
component PDF, G(s). Mathematically, this means
choosing from the part that has s � 0. Therefore, we are

FIG. 2. An illustration of the inverse distribution function
method for a single Gaussian PDF. First a point V is chosen
randomly from a uniform distribution. Then the cumulative dis-
tribution function FG is used to map V into a point X from a single
Gaussian PDF.
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choosing a point from a truncated Gaussian PDF, Gt(s),
which is related to G(s) by

Gt�s� � 

1
C

G�s� if s � 0

0 otherwise
. �26�

The corresponding CDFs are related by

FGt
�s� � 


1
C

�FG�s� � �1 � C�� if s � 0

0 otherwise
. �27�

The relationship between G, FG, and FtG is illustrated
in Fig. 3. Since we want to transform our uniform
sample point, V, to a truncated Gaussian sample point,
s, we set FGt(s) � V. Substituting this into (27), we
invert to find the desired sample point, s:

s � FG
�1�VC � �1 � C��. �28�

It is trivial to adjust the scheme to choose points from
both clear and cloudy regions: we merely keep the full
Gaussian PDF, rather than truncating it. Then we find
s � F�1

G (V).
Now we may choose t using the conditional distribu-

tion of t, conditional on the value of s we have just
chosen. Afterward, we may choose a value of w given s
and t. We continue in this way for the remaining vari-
ables.

To use this conditional distribution approach, before
we can find the marginal and conditional distributions
of a Gaussian-mixture PDF, we need to do so for a
single-Gaussian PDF. We use the symbols X � N d(�,
�) to denote a d-variate random sample X that is drawn
from a single-normal d-variate PDF N d with mean �
and covariance matrix �. That is, X is a particular set of
values, [s, t, w, Nc0 ln(Nc/Nc0), rr0 ln(rr/rr0)], that is
drawn randomly from a 5-dimensional single-Gaussian
PDF, N d; N d represents either of the two Gaussians, G1

or G2, that make up our double-Gaussian PDF (16).
We divide the variables into a set consisting of k vari-
ables, denoted by a subscript �, and a set consisting of
the remaining d � k variables, denoted by subscript �.
For instance, if k � 2, � corresponds to s and t, and �
might correspond to the remaining variables, w, Nc0

ln(Nc/Nc0), and rr0 ln(rr /rr0). We define the joint normal
PDF as

X � �X�

X�
�, �29�

with means

� � ���

��
�. �30�

So, for instance, if � � 2, then �� is a column vector
representing the first two means of the Gaussian, that
is, (s1, t1); �� is a column vector representing the other
means, that is, [w1, Nc0 ln(Nc1/Nc0), rr0 ln(rr1/rr0)]. The
covariance matrix is given by

� � ���� ���

��� ���
� �31�

with dimensions

� k � k k � �d � k�

�d � k� � k �d � k� � �d � k�
�. �32�

Then the marginal PDF of X� is N k(��, ���). The mar-
ginal PDF of X� is N d�k (��, ���) (Johnson 1987, p.
50). The conditional distribution of X� given X� � x� is

N d�k��� � ��� ���
�1�x� � ���,

��� � ��� ���
�1����. �33�

We continue until we have drawn a complete sample
of [s, t, w, Nc0 ln(Nc/Nc0), rr0 ln(rr/rr0)] from a Gaus-
sian mixture PDF. At this point, we exponentiate

FIG. 3. A depiction of a single Gaussian PDF, G(s), its corre-
sponding cumulative distribution function, FG(s), and the corre-
sponding cumulative distribution function associated with the
cloudy part (s � 0), FGt(s). Here FGt(s) is a truncated Gaussian,
and C denotes cloud fraction.
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XNc
� Nc0 ln(Nc/Nc0) and Xrr

� rr0 ln(rr/rr0) in order to
generate lognormal distributions for Nc and rc. That is,
we compute

Nc � Nc0 exp�XNc
�Nc0� rr � rr0 exp�Xrr

�rr0� . �34�

To summarize, we transform a uniform distribution to a
binormal/lognormal mixture via the following steps.
First, we select either the first or second Gaussian.
Then, from this individual Gaussian, we choose a value
of s from within cloud using the inverse cumulative
distribution function. Finally, we successively choose
values of [t, w, Nc0 ln(Nc/Nc0), rr0 ln(rr/rr0)] for this in-
dividual Gaussian using the aforementioned condi-
tional distribution formulas for a single Gaussian.

f. Computing a grid box average

The foregoing steps generate n sample points, (si, ti,
wi, Nci, rri), for the current grid box and time step, out
of a total of nt points in the sample. We need to input
the n points successively into a microphysical param-
eterization and find an average for the current time
step. To choose the mixture component for all n points,
we use the (d � 1)th variate, that is, the mixture variate,
corresponding to the first of the n sample points. Sup-
pose the microphysical parameterization of interest is
denoted A. Then the grid box average of A is given by

A �
C

n �
i�1

n

A�si, ti, wi, Nci, rri�. �35�

Multiplying by cloud fraction C ensures that we have a
grid box average, not a within-cloud average.

In a prognostic cloud parameterization, it is impor-
tant that water mass be conserved. This can be achieved
with a Latin hypercube scheme if only rates (i.e., ten-
dencies), such as autoconversion rates, are directly al-
tered, and if whatever is added to drizzle mixing ratio is
simultaneously removed from cloud mixing ratio, and
similarly for other processes.

4. Results: Does Latin hypercube sampling
perform better than traditional Monte Carlo
sampling?

In this section, we present a preliminary test of Latin
hypercube sampling. Namely, we investigate whether
Latin hypercube sampling can lead to a more accurate
calculation of autoconversion of cloud droplets to
drizzle drops. Autoconversion formulas are typically
highly nonlinear, and hence autoconversion modeling
should benefit from an accurate representation of sub-
grid variability.

The parameterization we choose is the Kessler auto-
conversion formula, AK (Kessler 1969):

AK � K�rc � rcrit�H�rc � rcrit�. �36�

Here, H is the Heaviside step function, equal to 1 when
its argument is positive and 0 when negative. Here also,
K is an inverse time constant, set to 10�3 s�1 (Grell et
al. 1994). The constant rcrit is a critical threshold below
which no autoconversion occurs. The Kessler formula is
piecewise linear, but because each piece differs in slope,
it is nonlinear at rcrit. We set rcrit � 0.3 g kg�1, a value
within the range of liquid water mixing ratios encom-
passed by the clouds that we consider, so that our cloud
cases “see” the nonlinearity.

The Kessler formula has the deficiency that it de-
pends only on the cloud water mixing ratio, rc, and not
the droplet number concentration, Nc (Cotton and An-
thes 1989, p. 92). This is not a disadvantage for us,
because our immediate interest is not accurate auto-
conversion prediction, but merely a simple nonlinear
function with which to test Latin hypercube sampling.
The main reason we use the Kessler formula, besides its
ubiquity, is that it permits analytic solutions with which
we can directly compare the numerical ones. However,
because the Kessler formula depends on only one vari-
able, it cannot be used to test how well Latin hypercube
sampling handles two or more correlated variables. For
correlated variables, theory predicts that Latin hyper-
cube sampling will perform about as well as traditional
Monte Carlo sampling.

For purposes of comparison, we need analytic formu-
las for two quantities that are obtained by integrating
the Kessler formula or its square over the Gaussian-
mixture PDF (16). The first is the grid box average
Kessler autoconversion,

AK � aAK1 � �1 � a�AK2 , �37�

where a is the mixture fraction, and AK1 and AK2 are
the autoconversion rates associated with plumes (i.e.,
mixture components) 1 and 2, given by

AKk � K

sk

�2�
exp��

1
2 �sk � rcrit


sk
�2�

� K�sk � rcrit�Crcrit,k
. �38�

The subscript k � 1, 2 denotes the plume. The quantity
Crcrit,k

is analogous to the plume cloud fraction, Ck, ex-
cept that it denotes the fraction of the kth plume that
contains liquid water content greater than rcrit

Crcrit,k



1
2�1 � erf� 1

�2 �sk � rcrit


sk
��	. �39�
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The second quantity we need is the grid box standard
deviation of Kessler autoconversion, defined here as

std�AK� � �Var�AK�. �40�

Here the grid box centered variance of Kessler auto-
conversion, Var(AK), is given by

Var�AK� � a��AK1 � AK�
2

� VarPlume�AK1��

� �1 � a���AK2 � AK�
2

� VarPlume�AK2��.

�41�

In this equation, VarPlume (AKk) is the within-plume
centered variance associated with plume k,

VarPlume�AKk� � K�sk � rcrit�AKk

� K2
sk
2 Crcrit,k

� AKk
2 . �42�

For completeness, we list the formula for the within-
cloud centered variance of Kessler autoconversion

AK
2 cld

� �AK

cld
�
2

�
Var�AK� � �AK�

2

C
�

�AK�
2

C2 . �43�

Here the within-cloud average Kessler autoconver-
sion is

AK

cld
�

AK

C
. �44�

To test the Latin hypercube method, we have seen that
we need a prototypical nonlinear formula (we have
chosen the Kessler formula). We also need plausible
surrogate samples of atmospheric subgrid variability.
For this we use large-eddy simulations (LES). We ex-
amine simulations of two very different boundary layer
cloud regimes: the Barbados Oceanographic and Me-
teorological Experiment (BOMEX) trade wind cumu-
lus case (Siebesma et al. 2003), and the First Interna-
tional Satellite Cloud Climatology Project (ISCCP) Re-
gional Experiment (FIRE) stratocumulus case (Moeng
et al. 1996). These simulations were set up according to
Global Energy and Water Experiment (GEWEX)
Cloud System Study (GCSS) intercomparison specifi-
cations, which are based loosely on observations. The
observations showed little drizzle formation, and the
simulations deliberately shut off drizzle and all other
precipitation processes. Nonetheless, it is still reason-
able to use these cases to test the Latin hypercube simu-
lations, because they contain realistic variability and
because we can still diagnostically compute what the
autoconversion rate would have been had it been
turned on in the simulation.

Our test of Latin hypercube sampling is diagnostic.
That is, we use the LES to compute offline all the pa-

rameters needed to specify the binormal/lognormal
PDF for each time of interest and altitude in the LES
domain. The parameters are the mixture fraction, a,
and the means and covariance matrix for each indi-
vidual Gaussian. The formula we test depends on only
two variables, rt and �l, which leads to 11 independent
parameters. These are obtained as in Larson and Golaz
(2005). For instance, a is obtained from the skewness of
vertical velocity, Skw � w�3/(w�2)

3/2
:

a �
1
2�1 � Skw� 1

4�1 � 
̃w
2 �3 � Skw

2�1�2	, �45�

where �̃2
w ≅ 0.4.

Given each PDF, we compute Kessler autoconver-
sion analytically and estimate it using Monte Carlo and
Latin hypercube sampling. We use LES instead of ob-
servational data because LES readily provides all the
needed input moments.

The Naval Research Laboratory’s Coupled Ocean/
Atmosphere Mesoscale Prediction System (COAMPS®;
Hodur 1997) is the basis of the LES model we use,
COAMPS–LES (Golaz et al. 2005). COAMPS–LES
solves the compressible equations of motion (Klemp
and Wilhelmson 1978) and includes a turbulent kinetic
energy (TKE) subgrid-scale model (Deardorff 1980).
Second-order advection is used for the momentum vari-
ables, and a positive definite advection scheme with
second-order polynomial interpolation (Bott 1989) is
used for the scalars. This LES model has compared well
with results from several GCSS intercomparisons of
boundary layer stratocumulus and cumulus layers, in-
cluding some not discussed here (Brown et al. 2002;
Stevens et al. 2001, 2005; Golaz et al. 2005). Both the
BOMEX and FIRE cases were run with specified or
idealized radiative cooling. For BOMEX, the grid box
size is 100 m � 100 m � 40 m and the domain size is
6400 m � 6400 m � 3000 m. For FIRE, the grid box size
is 50 m � 50 m � 25 m and the domain size is 3000 m
� 3000 m � 1200 m.

Our results are shown in Figs. 4, 5, and Table 1.
These are based on several calculated quantities. The
first (thick solid line) is analytic calculations of grid box
mean (37) and standard deviation (40) of Kessler au-
toconversion. The second (circles) is estimates of these
quantities using the traditional Monte Carlo method,
with one sample point per grid box and time step. Each
new sample point is drawn independently of the prior
ones. The third (triangles) is a Latin hypercube esti-
mate with 12 total sample points (nt � 12), with one
sample point used per grid box and time step (n � 1).
After 12 time steps, a new batch of sample points is
chosen. This method does not call the autoconversion
parameterization any more often than traditional
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Monte Carlo. The fourth calculated quantity (squares)
is a Latin hypercube estimate with 12 total sample
points (nt � 12), but with two sample points used per
grid box and time step (n � 2), thereby doubling the
computational cost associated with microphysics.

First consider the BOMEX cumulus results, pre-
sented in Fig. 4. Figure 4a presents a snapshot of
Kessler autoconversion at one time step. There is large
variability for Monte Carlo and Latin hypercube with

n � 1, with autoconversion rates ranging from 0 to 4
times the analytic value. We find, as expected, that for
a particular snapshot, a Latin hypercube sample with
n � 1 is no less noisy than a Monte Carlo sample for a
particular snapshot; it is only after averaging at least
nt � 12 time steps that Latin hypercube with n � 1
reduces the noise. Less noisy is the Latin hypercube
sample with n � 2 points per grid box and time step,
although it still exhibits considerable noise.

FIG. 4. Estimates of grid box average Kessler autoconversion for the BOMEX cumulus simulation. Estimates are based on analytic
Eqs. (37) and (40) (thick solid line), traditional Monte Carlo (n � 1, nt � 1) (circles), Latin hypercube sampling with (n � 1, nt � 12)
(triangles), and Latin hypercube sampling with (n � 2, nt � 12) (squares). Here n denotes the number of sample points per grid box
and time step; nt denotes the total number of points in the Latin hypercube sample. (a) An instantaneous snapshot of the estimates: using
two sample points per grid box and time step (n � 2, squares) reduces the noise somewhat. (b) The std devs: using two sample points
gives lower values, i.e., reduces noise, as desired. (c) Time-averaged autoconversion: a Latin hypercube sample (n � 1, nt � 12)
(triangles) is less noisy than traditional Monte Carlo (circles), with no additional calls to the microphysics. (d) The “true” LES Kessler
autoconversion (diamonds) along with analytic approximations based on a binormal PDF (thick solid line), within-cloud liquid water
(x marks), and grid box average liquid water (asterisks); the binormal PDF approximation is somewhat in error, and the within-cloud
and grid box average liquid water give underestimates, as expected.
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Figure 4b, which shows instantaneous standard de-
viations about the mean, tells a similar story. These
deviations represent variability from time step to time
step; small values are desirable. The Monte Carlo
and n � 1 Latin hypercube standard deviations match
the analytic Eq. (40). The n � 2 Latin hypercube
sample has a lower standard deviation, demonstrating
its reduced instantaneous noise, in conformity with
Fig. 4a.

Figure 4c displays a 1-h average of autoconversion.
Sixty snapshots are included in the average, with one
snapshot per minute. Even after this time period, the
Monte Carlo method (circles) exhibits considerable
noise. Noticeably less noisy is the n � 1 Latin hyper-
cube sample, and even less noisy is the n � 2 Latin
hypercube sample.

Figure 4d addresses the question of whether the so-
lution to which Monte Carlo and Latin hypercube
methods converge is accurate. When using these meth-
ods, before drawing a random sample, first we must fit
a binormal/lognormal PDF to the “true” PDF produced
by the LES. If the binormal/lognormal PDF is a poor
fit, the end result will be poor, regardless of how well
we choose the sample points. Figure 4d shows that the
PDF fit is moderately accurate but could use improve-
ment. Specifically, the Kessler autoconversion calcu-
lated analytically from the fitted binormal/lognormal
PDF (solid line) exceeds that computed directly from
the true LES PDF (diamonds). This is because of errors
in the shape of the assumed PDF family. Also plotted is
Kessler autoconversion computed using Eq. (36), but
with the local cloud water rc replaced by the grid box

FIG. 5. Same as in Fig. 4, but for the FIRE stratocumulus simulation.

4022 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62



average cloud water rc (asterisks) or the within-cloud
average cloud water rc

cld (x marks). It can be proven
that both these approximations systematically under-
predict the true autoconversion (Larson et al. 2001), as
illustrated in Fig. 4d. In fact, using grid box average
cloud water rc (asterisks) yields zero everywhere, be-
cause cloud fraction is small and therefore rc 
 rcrit.
However, some autoconversion would occur if we were
to reduce the autoconversion threshold, rcrit � 0.3 g
kg�1. As an aside, we note that prognosing rc

cld accu-
rately is also difficult (Larson 2004).

Results from the FIRE stratocumulus case are shown
in Fig. 5. The overall pattern is similar to that for
BOMEX: there is considerable variability for a given
snapshot, but time averaging reduces the variability
more for Latin hypercube sampling than for traditional
Monte Carlo sampling. The improvement, however, is
milder than for BOMEX. Substituting the average
within-cloud cloud water into the Kessler formula (x
marks) leads to a severe underestimate of the true au-
toconversion (diamonds) because rc

cld � rcrit. A less
severe underestimate would occur if we were to lower
the critical threshold for autoconversion, here taken to
be rcrit � 0.3 g kg�1.

Table 1 quantifies the above discussion. Shown are
error estimates averaged over an hour of time (60 snap-
shots, each separated by 1 min) and over the vertical
extent of the cloud. Latin hypercube sampling is more
accurate than traditional Monte Carlo, noticeably so
for BOMEX and less so for FIRE.

We now compare the reduction of variance produced
by Latin hypercube sampling versus the optimal spec-
tral sampling technique of Räisänen and Barker (2004).
Optimal spectral sampling exploits physical insight
about atmospheric radiation to reduce noise in radia-

tive transfer calculations. In the examples listed in
Table 1 of Räisänen and Barker (2004), optimal spec-
tral sampling costs 50% more than traditional Monte
Carlo but, impressively, roughly halves instantaneous
standard deviations as compared with Monte Carlo
sampling from the cloud alone. In contrast, our Latin
hypercube sample with (n � 2, nt � 12) costs double
and only reduces instantaneous deviations by a factor of
1.2 to 1.4. However, our Latin hypercube sample with
(n � 1, nt � 12) cost negligibly more than traditional
Monte Carlo from cloud points and reduces time-
averaged deviations by a factor of 1.5 to 3. Latin hyper-
cube sampling with (n � 2, nt � 12) reduces the time-
averaged noise further. Again, this shows that Latin
hypercube sampling reduces time-averaged noise more
effectively than instantaneous noise. Räisänen and
Barker (2004) demonstrate that physical insight can be
used very effectively to reduce variance for radiative
transfer. It is our hope that Latin hypercube sampling
can benefit microphysical calculations without requir-
ing knowledge of the details of the physics. For micro-
physical calculations, optimal spectral sampling is not
directly applicable.

5. Summary and conclusions

This paper has addressed a particular problem in nu-
merical modeling of cloud microphysics: namely, that of
driving a local, nonlinear microphysical parameteriza-
tion when the model resolution is coarse. When this
problem arises, inaccurate results are generated by sim-
ply driving the microphysical parameterization with
grid box averages of model-produced fields, such as
liquid water content. Rather, the host model needs to
feed the microphysical parameterization information
about subgrid variability.

TABLE 1. Errors in Kessler autoconversion as computed by traditional Monte Carlo (TMC) (n � 1, nt � 1), Latin hypercube (LH)
sampling with one sample point per altitude and time step (n � 1, nt � 12), and Latin hypercube sampling with two sample points per
altitude and time step (n � 2, nt � 12). The latter has double the computational cost of the former two. Errors are computed based on
LES of the BOMEX cumulus case and the FIRE stratocumulus case. Errors are root-mean-square deviations from the analytic grid box
average autoconversion rates given by (37). The errors are averaged over the third hour of the simulations and the altitudes that contain
some autoconversion. Instantaneous deviations are instantaneous rms errors that are subsequently time- and vertically averaged.
Time-averaged deviations are computed by averaging autoconversion over an hour, calculating the deviation from the analytic auto-
conversion rate averaged over the same hour, taking the absolute values, and vertically averaging. Numbers in parentheses are
normalized by the traditional Monte Carlo values. The time-averaged deviations are lower for LH sampling than for TMC sampling.
The instantaneous deviations are lower only when there are n � 2 sample points per altitude and time step, as expected. Errors are
lower for BOMEX because cloud fraction in BOMEX is small.

BOMEX FIRE

Time-averaged
deviations (10�9 s�1)

Instantaneous
deviations (10�9 s�1)

Time-averaged
deviations (10�9 s�1)

Instantaneous
deviations (10�9 s�1)

TMC (n � 1, nt � 1) 0.45 (1) 3.4 (1) 4.1 (1) 35 (1)
LH (n � 1, nt � 12) 0.15 (0.33) 3.6 (1.1) 2.7 (0.66) 37 (1.1)
LH (n � 2, nt � 12) 0.10 (0.22) 2.5 (0.74) 1.2 (0.29) 30 (0.86)
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The particular solution we have investigated is a
Monte Carlo method called Latin hypercube sampling
(McKay et al. 1979; OW03). Compared with traditional
Monte Carlo sampling, Latin hypercube sampling ac-
complishes a reduction of variance by choosing sample
points quasi randomly, rather than entirely randomly.

Microphysics may be computed using the Latin hy-
percube algorithm as follows. The input is information
about the distribution of fields within a particular grid
box at a particular time step. The output is an estimate
of the grid box average of a microphysical process at
that time step. The steps of the algorithm are

1) Choose points from Latin hypercube sample for a
uniform distribution [Eq. (3)].

2) Transform the uniformly distributed sample points
to the actual distribution that represents the grid
box’s subgrid variability (section 3e).

3) Input the transformed sample points into the micro-
physics parameterization; that is, call the microphys-
ics subroutine once for each of the sample points
(section 3f).

4) Average the results of the microphysical calcula-
tions to yield a grid box average (section 3f).

All steps are then repeated for all other grid boxes and
time steps.

Latin hypercube sampling has the following advan-
tage over traditional Monte Carlo sampling:

• It can reduce statistical noise inherent in Monte Carlo
methods. Latin hypercube sampling spreads a sample
of nt points throughout the sample space so that the
points do not, by random chance, cluster in one sub-
volume. Therefore, averages over nt Latin hypercube
points are often more accurate than averages over nt

randomly sampled points.

The exception occurs when variables are strongly
correlated. Then Latin hypercube sampling is unlikely
to be more accurate than random sampling (Press et al.
1992), but it is also guaranteed to be not much less
accurate (Owen 1997). Our sampling method can
handle correlations because we have chosen a general
yet tractable joint PDF family. This is important be-
cause many microphysical processes depend on such
correlations. For instance, activation of cloud conden-
sation nuclei depends jointly on w and rt.

Latin hypercube sampling, in conjunction with our
joint binormal/lognormal PDF, shares the following ad-
vantages and disadvantages with traditional Monte
Carlo sampling:

• It is compatible with a large variety of local param-
eterizations, both numerical and analytic. This makes
it possible, with a single interface, to account for sub-

grid variability in many local processes including
those in microphysics and even potentially atmo-
spheric chemistry. This generality is made possible by
the fact that the Latin hypercube method does not
rely on properties of a particular parameterization to
reduce variance. This is useful for numerical models,
such as the Weather Research and Forecasting
model, that contain many options for microphysics
parameterization. These existing parameterizations
would require little, if any, modification to be used
with Latin hypercube sampling. Additionally, it may
be possible to combine Latin hypercube sampling
with other methods that exploit the physics of a par-
ticular parameterization to reduce variance. Nonlocal
processes like radiative transfer cannot be handled
with the algorithm in this paper unless an assumption
about cloud overlap is made.

• It can be extended to any number of variates. The
number of input variables differs for different micro-
physics parameterizations. Some microphysics pa-
rameterizations require the input of only one pre-
dicted “hydrometeor,” cloud/ice water content
(Tiedtke 1993). Other microphysical parameteriza-
tions require the prediction of many hydrometeor
categories such as cloud droplets, raindrops, pristine
ice, graupel, and so on (Cotton et al. 2003). For ease
of exposition, the present paper has discussed a
5-variate input sample in total water mixing ratio rt,
liquid water potential temperature �l, vertical veloc-
ity w, droplet number mixing ratio Nc, and drizzle
mixing ratio rr. However, this can be easily general-
ized to more variables because our assumed binor-
mal/lognormal PDF is sufficiently simple.

• It can sample either within-cloud areas exclusively, or
both cloudy and clear areas. It is wasteful to choose
sample points in clear areas for processes like auto-
conversion that occur only in cloud. Therefore, in this
paper, we have sampled only the cloudy portion of a
grid box. However, for processes that occur in both
cloudy and clear areas, our algorithm can be easily
adapted.

• It allows the modeler to choose the PDF family. Dif-
ferent PDFs may be suited to different physical pro-
cesses. If the joint binormal/lognormal PDF that we
discuss is not adequate for a particular application, a
more appropriate PDF may be substituted with rela-
tive ease.

• It allows the modeler to choose the number of calls to
the microphysics per grid box and time step. The size
and implementation of the Latin hypercube sample
can be varied based on the computational resources
available and the importance of reducing statistical
noise. For instance, suppose one chooses to use a
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12-point Latin hypercube sample. If the microphysi-
cal parameterization is computationally expensive
and the subgrid variability small, one may select 1
point from the 12-point sample for each time step,
and repeat after 12 time steps. If the parameteriza-
tion is cheap and the variability large, one may in-
stead select 2 points per time step and thereby com-
plete the 12-point sample in 6 time steps.

We tested Latin hypercube sampling against large-
eddy simulations (LES). We simulated two different
boundary layer cloud regimes: the BOMEX trade wind
cumulus case, and the FIRE stratocumulus case. Our
tests were diagnostic: that is, we used LES output to fix
the PDF at each altitude and time of interest, and then,
from these PDFs, we drew Latin hypercube and Monte
Carlo samples. We used these samples to compute the
Kessler autoconversion rate from cloud droplets to
drizzle drops. Since the Kessler formula depends only
one variable (cloud water), it cannot be used to test
sampling of correlated variables, although for corre-
lated formulas, theory predicts that Latin hypercube
and Monte Carlo sampling perform comparably. We
chose Kessler autoconversion as a test formula because
it is widely used and, importantly, is analytically trac-
table.

In our first Latin hypercube sampling strategy, we
chose 12 sample points, and selected one sample point
per altitude and time step. This involves no additional
calls to the microphysics beyond traditional Monte
Carlo sampling. Nevertheless, the time-averaged Latin
hypercube estimates were better by a factor of 3 for
BOMEX and a factor of 1.5 for FIRE. However, the
noise in the instantaneous profiles was not ameliorated,
as expected. In simulations in which this level of noise
is problematic, one may maintain the 12-point Latin
hypercube sample, but choose two sample points per
altitude and time step, which doubles the microphysical
cost. We found that this reduces the instantaneous
noise somewhat, although instantaneous autoconver-
sion rates can still range from zero to three times the
true value. Whether or not an interactive simulation
can accept this magnitude of noise cannot be deter-
mined by our diagnostic tests.

In summary, we found Latin hypercube sampling to
be a very general method that offers the prospect of
moderately reducing the time-averaged sampling noise
in Monte Carlo estimates at negligible extra computa-
tional cost.
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